Tuesday 1 April 2014

Digestion, Absorption and Assimilation in human (SPM level)


Digestion
Mouth
Salivary glands produce saliva which contains salivary amylase. Starch is hydrolysed into maltose.
Stomach
Gastric glands produce gastric juice which contains enzyme pepsinand rennin. Proteins are hydrolysed into polypeptide. Caseinogens is converted into casein.
Duodenum
Liver produces bile. Bile emulsifies lipid. Pancreas produces pancreatic amylase, trypsin & lipase. Starch is hydrolysed into maltose. Polypeptide is hydrolysed into peptide. Lipid is hydrolysed into fatty acids & glycerol.
Ileum
Intestinal gland secretes intestinal juice which contains enzyme maltase, lactase, sucrase and erepsin. Maltase hydrolyses maltose into glucose & glucose. Lactase hydrolyses lactose into glucose and galactose. Sucrase hydrolyses sucrose into glucose & fructose. Erepsin hydrolyses peptide into amino acids

Absorption
Glucose, amino acids, Vitamins B & C are absorbed through facilitated diffusion into blood capillaries in the villi then into hepatic portalvein that leads to liver.

Fatty acids, glycerols, Vitamin ADEK are absorbed into lacteals (FA & G in the form of lipid droplets). Then lacteal converges into lymphatic system. Flows into right lymphatic duct & thoracic duct, finally enters subclavian veins into bloodstream.

Assimilation
In the liver
Liver synthesises plasma proteins from amino acids. Short supply of glucose – liver converts amino acids into glucose. Excess amino acids are broken down – deamination. Urea is produced & transported to kidney to be excreted.
Glucose is converted & stored in the liver. Blood sugar level falls, glycogen is converted back into glucose. Liver full of glucose – converted into lipids.
Lipids enter the heart through subclavian vein transported in the bloodstream to body cells.

In the cells
Amino acids – used for synthesising new protoplasm & repair damaged tissues. Build enzymes & hormones. Synthesise plasma membrane.
Glucose – oxidised to release energy (cellular respiration). Used for muscle contraction, synthesis of proteins. Excess glucose is stored in muscles (glycogen).
Lipids – phospholipids & cholesterol : components of plasma membrane
Fats are stored around organs act as cushions that protect organs from injuries. Excess fats are stored in adipose tissue as reserve energy. When body lacks glucose, fats are oxidised to release energy.

Air kencing


Daripada Wikipedia, ensiklopedia bebas.
Air kencing adalah bahan kumbahan cecair badan yang disingkir oleh buah pinggang melalui proses penapisan dari darah yang dikenali sebagai kencing dan dikeluarkan melalui urethra. Metabolit pada peringkat sel/selular menghasilkan banyak sebatian kumbahan, kebanyakannya kaya dengan nitrogen, yang perlu disingkirkan dari aliran darah. Kumbahan ini akhirnya disingkir dari badan melalui proses mikturition, kaedah utama menyingkirkan bahan kimia larut air dari badan. Bahan kimia ini boleh dikesan dan dianalisa oleh urinalysis. Bagi wanita hamil, cecair amniotik berkait rapat dengan air kencing, boleh dianalisa oleh amniosentesis.

Fisiologi[sunting | sunting sumber]

Untuk menyingkir kumahan larut, yang beracun, kebanyakan haiwan memiliki sistem perkumuhan. Bagi manusia kumuhan larut disingkir melalui sistem kencing yang terdiri daripada buah pinggangureterpundi kencing, dan uretra. Buah pinggang mengeluarkan bahan kumuhan larut dari aliran darah, termasuk juga air lebihan, gula, dan pelbagai sebatian lain. Komposisi air kencing diselaras dalam proses penyerapan semula di mana larutan tertentu, seperti glukos, diserap kembali dalam salur darah melalui molekul pembawa. Bahan baki mengandungi kepekatan tinggi ureadan bahan lain, termasuk toksin. Air kencing mengalir melalui struktur berikut: buah pinggangureterpundi kencing, dan akhirnya uretra. Air kencing dihasilkan melalui proses penapisan, penyerapan semula, dan penyingkiran melalui tiub.

Komposisi[sunting | sunting sumber]

Air kencing adalah larutan lut sinar yang boleh kelihatan dari tanpa warna kepada warna ambar tetapi biasanya kuning jernih. Air kencing adalah larutan aqueous bagi kumuhan metabolik sepertiurea, larutan garam, dan sabatian organik. Cecair dan bahan yang ditapis oleh buah pinggang, yang akan menjadi air kencing, datangnya dari darah atau cecair ruang-antara (interstitial).
Kecuali dalam kes jangkitan air kencing atau [[jangkitan salur kencing|jangkitan salur kencing (urinary tract infection - UTI)), air kencing adalah hampir steril an hampir tanpa warna. Berikut dengan penyingkiran dari badan, air kencing boleh menjadi hancing akibat tindakan bakteris. Lebih jelas, ammonia yang mencucuk hidung dihasilkan dari penguraian urea.Sesetengah penyakit menukar kuantiti dan pemalar air kencing seperti gula contohnya penyakit kencing manis. Air kencing pada umumnya agak berasid.

Bahaya[sunting | sunting sumber]

Urea adalah tosid dan boleh merengsa pada kulit dan mata. Kepekatan tinggi dalam darah boleh menyebabkan kerosakan pada organ badan. Kepekatan rendah urea seperti dalam air kencing tidak merbahaya.

Ciri-ciri[sunting | sunting sumber]

Warna kuning terang air kencing disebabkan oleh pewarna urokrom dan juga keluaran penguraian bilirubin dan urobilin. Ia boleh berbentuk antara jernih ambar gelap, antara faktor lain bergantung kepada jumlah air dalam badan.

Analisa kimia[sunting | sunting sumber]

Struktur Urea
Air kencing mengandungi pelbagai bahan yang berbeza dengan apa yang masuk kedalam tubuh. Selain air, air kencing mengandungi pelbagai garam bukan organik dan sebatian organik, termasuk protin, hormon, dan pelbagai jenis metabolit metabolites.

Warna luar biasa[sunting | sunting sumber]

Fail:Carta warna air kencing.jpg
Carta warna air kencing menunjukkan nilai kepekatan, makna dan penyebab
  • Jernih - menunjukkan terlebih air, yang biasanya dianggap lebih sihat berbanding kekurangan air dehidrat. Dari segi ujian dadah, ia boleh menunjukkan potensi cubaan bagi mengelak pengesanan dadah haram dalam aliran darah melalui lebih-hidrat[1].
  • Kuning/Kuning bata cair mungkin menunjukkan penyingkiran lebihan vitamin B dari aliran darah.
  • Sesetengah ubat seperti rifampin dan pyridium boleh menukar air kencing menjadi kuning bata.
  • Kencing berdarah dinamakan hematuria, potensi tanda jangkitan pundi kencing.
  • Memakan ubi bit (beets) mampu menyebabkan air kencing mempunyai kilauan merah jambu, kaedaan yang tidak merbahaya dan sementara.
  • Air kencing gelap atau perang mungkin merupakan simptom demam kuningrhabdomyolysis, atau sindrom Gilbert.
  • Air kencing hitam atau bewarna gelap dirujuk sebagai melanuria dan mungkin disebabkan oleh melanoma.
  • Air kencing kemerahan atau kelabu mungkin disebabkan oleh porphyria. Juga, pemakanan bit (beets) mampu menyebabkan air kencing mempunyai kilauan merah jambu, kaedaan yang tidak merbahaya dan sementara.
  • Kuning flores/kehijauan Fluorescent Yellow / mungkin disebabkan oleh permakanan vitamin tambahan, terutama vitamin B.
  • Warna kencing kuning gelap biasanya menunjukkan kekurang air dalam badan (dehidration).

Bau[sunting | sunting sumber]

Air kencing biasanya tanpa bau, bagaimanapun boleh menjadi tengik selepas memakan sesetengah makanan. Memakan asparagus diketahui menghasilkan bau kuat pada manusia. Ini disebabkan badan manusia mengurai asid asparagusic. Sungguhpun bau air kencing adalah sejagat, bau ini tidak disedari sejagat.[2]

Keruh[sunting | sunting sumber]

Air kencing keruh mungkin merupakan simptom jangkitan bakteria, tetapi juga diakibatkan oleh pembentukan kristal garam seperti kalsium fosfat.

pH[sunting | sunting sumber]

pH air kencing hampir neutral (7) tetapi biasanya boleh berbeza antara 4.5 dan 8. Asid yang kuat atau beralkali mungkin merupakan tanda penyakit,[3] dan mungkin juga menyumbang kepada penyakit. Bagi mereka dengan hiperuricosuria, air kencing berasid boleh menyumbang kepada pembentukan batu asid urik dalam buah pinggang, ureter, atau pundi kencing.[4] Urine pH can be monitored by the physician[5] or at home.

Jumlah[sunting | sunting sumber]

Jumlah penghasilan air kencing bergantung kepada pelbagai faktor termasuk keadaan hidrasi air dalam badan, aktiviti, faktor persekitaran, saiz, dan kesihatan. pada manusia dewasa purata pengeluaran adalah sekitar 1 - 2 Liter sehari. Menghasilkan air kencing yang terlalu banyak atau sedikit perlu perhatian perubatan: Polyuria merupakan keadaan penghasilan air kencing secara berlebihan (> 2.5 L/sehari), sebaliknya oliguria di mana < 400 mL dihasilkan sehari, atau anuria dengan penghasilan < 100 mL sehari.

Kepadatan atau graviti khusus[sunting | sunting sumber]

Kepadatan air kencing normal atau nilai graviti khusus antara 1.003-1.035 (g.cm-3) , dan sebarang pesongan mungkin ya atau mungkin tidak berkait dengan sebarang masaalah kencing.

Air kencing dalam perubatan[sunting | sunting sumber]

Pemeriksaan[sunting | sunting sumber]

Ramai pakar perubatan dalam sejarah telah melakukan pemeriksaan dan pengujian air kencing pesakit mereka. Hermogenes menulis mengenai warna dan ciri-ciri lain air kencing sebagai petanda penyakit tertentu. Abdul Malik Ibn Habib dari Andalusia d.862CE, menyebut banyak lapuran mengenai pemeriksaan air kencing di seluruh empayar Umayyad.[6] Diabetes mellitus mendapat namanya kerana air kencing pengidapnya adalah banyak dan manis. Urinalysis merupakan pemeriksaan air kencing dan sebahagian dari ujian biasa. Kultur air kencing dilakukan apabila jangkitan salur kencing disyaki. Pemeriksaan air kencing melalui mikroskop mungkin berguna bagi mengenal pasti substrat organik dan bukan organik dan membantu diagnosis.
Warna dan jumlah air kencing boleh menjadi petunjuk berguna bagi tahap rehidrasi (rehydration). Air kencing banyak dan jernih biasanya tanda hidrasi yang mencukupi, air kencing gelap merupakan tanda dehidrasi dehydration. Pengecualian adalah apabila alkoholkafin, dan diuretik lain diambil, dalam kes di mana air kencing mungkin jernih dan banyak dan orang tersebut masih dehidrasi kekurangan air.

Penggunaan[sunting | sunting sumber]

Kegunaan terapi kencing sebagai rawatan perubatan atau regim kesihatan harian adalah tidak biasa. Pengamal perubatan Aztek menggunakan air kencing bagi mencuci luka luaran bagi menghalang jangkitan, dan memberikannya sebagai minuman bagi melegakan masaalah perut dan usus. Ciri-ciri perubatannya juga telah digunakan di China sebagai sebahagian perubatan holistik, dan di India, terutamanya sebagai sebahagian perubatan tradisi India, Ayurveda, di bawah nama Amaroli.

Sumber[sunting | sunting sumber]

Air kencing mungkin memiliki protin atau bahan lain yang mungkin berguna bagi rawatan perubatan. Air kencing dari wanita postmenopaus adalah kaya dengan gonadotropin yang mampu menghasilkan hormon perangsang folikel dan hormon meluteinkan bagi terapi kesuburan. Produk perdagangan pertama adalah Pergonal. Air kencing dari wanita mengandung mengandungi cukuphuman chorionic gonadotropin bagi penhasilan perdagangan dan penulenan bagi menghasilkan ubat hCG. Air kencing kuda betina bunting merupakan sumber estrogen, terutamanya Premarin.
Pada masa kini, syarikat Port-A-John dari Utica, Michigan, Amerika Syarikat telah memajukan penapis bagi mengumpul protin penting bagi perubatan daripada pengguna tandas kimia mereka.

Kegunaan lain[sunting | sunting sumber]

Kegunaan silam[sunting | sunting sumber]

  • Orang Rom purba menggunakan air kencing sebagai agen peluntur bagi mencuci pakaian dan gigi.

Peluru[sunting | sunting sumber]

Kegunaan lain[sunting | sunting sumber]

Kegunaan silam[sunting | sunting sumber]

  • Rom purba menggunakan air kencing sebagai agen peluntur bagi mencuci pakaian dan gigi.

Peluru[sunting | sunting sumber]

Pada masa silam, air kencing dikumpul dan digunakan bagi penghasilan ubat bedil. Air kencing kusam ditapis melalui tong berisi jerami dan dibiarkan masam selama setahun atau lebih. Selepas tempoh ini, air digunakan bagi mencuci garam kimia daripada jerami tersebut. Campuran ini kemudiannya ditapis melalui abu kayu (wood ashes) dan dibiarkan kering di bawah sinaran matahari. Kristal potasium nitrat kemudian dikumpulkan dan ditambah kepada belerang dan arang untuk menghasilkan serbuk hitam.[7]

Tekstil[sunting | sunting sumber]

Air kencing telah digunakan sebagai mordant bagi penyedian tekstil, terutama bulu, bagi pewarna. Air kencing digunakan bagi mewarna terutama indigo di mana air kencing bertindak balas dengan dye yang tidak larut bagi membentuk sebatian larut.

Baja[sunting | sunting sumber]

Air kencing memiliki sejumlah besar urea, sumber yang baik bagi nitrogen bagi tumbuhan. Oleh itu ia merupakan penggalak berguna bagi kompos. Urea kurang toksik berbanding amonia dan terbentuk dengan gabungan tidak langsung dengan keluaran sampingan pendeaminaan (2 NH3 molekul) dan pernafasan selular (1 CO2 molekul). Komponen lain termasuk pelbagai garam bukan organik seperti sodium khloride (sodium disingkir dikenali sebagai natriuresis).

Mammalian Kidney



The excretory system of mammals centres on the kidneys, which are also the principal site of water balance and salt regulation. Mammals have a pair of kidneys. Each kidney, bean–shaped and about 10 cm long in humans, is supplied with blood by a renal artery and drained by a renal vein.

Blood flow through the kidneys is voluminous. In humans, the kidneys account for less than 1% of body weight, but they receive about 20% of resting cardiac output. Urine exits each kidney through a duct called the ureter, and both ureters drain into a common urinary bladder. During urination, urine is expelled from the urinary bladder through a tube called the urethra, which empties to the outside near the vagina in females or through the penis in males. Sphincter muscles near the junction of the urethra and the bladder, which are under nervous system control, regulate urination.

The mammalian kidney has two distinct regions, an outer renal cortex and an inner renal medulla. Packing both regions are microscopic excretory tubules and their associated blood vessels. The nephron—the functional unit of the vertebrate kidney—consists of a single long tubule and a ball of capillaries called the glomerulus. The blind end of the tubule forms a cup–shaped swelling, called Bowman′s capsule, which surrounds the glomerulus. Each human kidney contains about a million nephrons, with a total tubule length of 80 km.

Filtration of the Blood
Filtration occurs as blood pressure forces fluid from the blood in the glomerulus into the lumen of Bowman′s capsule. The porous capillaries, along with specialised cells of the capsule called podocytes, are permeable to water and small solutes but not to blood cells or large molecules such as plasma proteins. Filtration of small molecules is nonselective, and the filtrate in Bowman′s capsule contains salts, glucose, amino acids, and vitamins; nitrogenous wastes such as urea; and other small molecules—a mixture that mirrors the concentrations of these substances in blood plasma.

Pathway of the Filtrate
From Bowman′s capsule, the filtrate passes through three regions of the nephron: the proximal tubule; the loop of Henle, a hairpin turn with a descending limb and an ascending limb; and the distal tubule. The distal tubule empties into a collecting duct, which receives processed filtrate from many nephrons. This filtrate flows from the many collecting ducts of the kidney into the renal pelvis, which is drained by the ureter.

In the human kidney, approximately 80% of the nephrons, the cortical nephrons, have reduced loops of Henle and are almost entirely confined to the renal cortex. The other 20%, the juxtamedullary nephrons, have well–developed loops that extend deeply into the renal medulla. Only mammals and birds have juxtamedullary nephrons; the nephrons of other vertebrates lack loops of Henle. It is the juxtamedullary nephrons that enable mammals to produce urine that is hyperosmotic to body fluids, an adaptation that is extremely important for water conservation.

The nephron and the collecting duct are lined by a transport epithelium that processes the filtrate to form the urine. One of this epithelium′s most important tasks is reabsorption of solutes and water. Between 1,100 and 2,000 L of blood flows through a pair of human kidneys each day, a volume about 275 times the total volume of blood in the body. From this enormous traffic of blood, the nephrons and collecting ducts process about 180 L of initial filtrate, equivalent to two or three times the body weight of an average person. Of this, nearly all of the sugar, vitamins, and other organic nutrients and about 99% of the water are reabsorbed into the blood, leaving only about 1.5 L of urine to be voided.

Blood Vessels Associated with the Nephrons
Each nephron is supplied with blood by an afferent arteriole, a branch of the renal artery that subdivides into the capillaries of the glomerulus. The capillaries converge as they leave the glomerulus, forming an efferent arteriole. This vessel subdivides again, forming the peritubular capillaries, which surround the proximal and distal tubules. More capillaries extend downward and form the vasa recta, the capillaries that serve the loop of Henle. The vasa recta also form a loop, with descending and ascending vessels conveying blood in opposite directions.

Although the excretory tubules and their surrounding capillaries are closely associated, they do not exchange materials directly. The tubules and capillaries are immersed in interstitial fluid, through which various substances diffuse between the plasma within capillaries and the filtrate within the nephron tubule. This exchange is facilitated by the relative direction of blood flow and filtrate flow in the nephrons.
 

Secretion and reabsorption in the proximal tubule substantially alter the volume and composition of filtrate. For example, the cells of the transport epithelium help maintain a relatively constant pH in body fluids by the controlled secretion of H+. The cells also synthesise and secrete ammonia, which neutralises the acid and keeps the filtrate from becoming too acidic. The more acidic the filtrate, the more ammonia the cells produce and secrete, and the urine of a mammal usually contains some ammonia from this source (even though most nitrogenous waste is excreted as urea). The proximal tubules also reabsorb about 90% of the important buffer bicarbonate (HCO3−). Drugs and other poisons that have been processed in the liver pass from the peritubular capillaries into the interstitial fluid, and then are secreted across the epithelium of the proximal tubule into the nephron′s lumen. Conversely, valuable nutrients, including glucose, amino acids, and potassium (K+), are actively or passively transported from the filtrate to the interstitial fluid and then are moved into the peritubular capillaries.

One of the most important functions of the proximal tubule is reabsorption of most of the NaCl (salt) and water from the huge initial filtrate volume. Salt in the filtrate diffuses into the cells of the transport epithelium, and the membranes of the cells actively transport Na+ into the interstitial fluid. This transfer of positive charge is balanced by the passive transport of Cl− out of the tubule. As salt moves from the filtrate to the interstitial fluid, water follows by osmosis. The exterior side of the epithelium has a much smaller surface area than the side facing the lumen, minimizing leakage of salt and water back into the tubule. Instead, the salt and water now diffuse from the interstitial fluid into the peritubular capillaries.

Reabsorption of water continues as the filtrate moves into the descending limb of the loop of Henle. Here the transport epithelium is freely permeable to water but not very permeable to salt and other small solutes. For water to move out of the tubule by osmosis, the interstitial fluid bathing the tubule must be hyperosmotic to the filtrate. The osmolarity of the interstitial fluid does in fact become progressively greater from the outer cortex to the inner medulla of the kidney. Thus, filtrate moving downward from the cortex to the medulla within the descending limb of the loop of Henle continues to lose water to interstitial fluid of greater and greater osmolarity, which increases the solute concentration of the filtrate.

The filtrate reaches the tip of the loop, deep in the renal medulla in the case of juxtamedullary nephrons, then moves back to the cortex within the ascending limb. In contrast to the descending limb, the transport epithelium of the ascending limb is permeable to salt but not to water. The ascending limb has two specialized regions: a thin segment near the loop tip and a thick segment adjacent to the distal tubule. As filtrate ascends in the thin segment, NaCl, which became concentrated in the descending limb, diffuses out of the permeable tubule into the interstitial fluid. This movement increases the osmolarity of the interstitial fluid in the medulla. The exodus of salt from the filtrate continues in the thick segment of the ascending limb, but here the epithelium actively transports NaCl into the interstitial fluid. By losing salt without giving up water, the filtrate is progressively diluted as it moves up to the cortex in the ascending limb of the loop.

The distal tubule plays a key role in regulating the K+ and NaCl concentration of body fluids by varying the amount of the K+ that is secreted into the filtrate and the amount of NaCl reabsorbed from the filtrate. Like the proximal tubule, the distal tubule also contributes to pH regulation by the controlled secretion of H+ and reabsorption of bicarbonate (HCO3−).

The collecting duct carries the filtrate through the medulla to the renal pelvis. By actively reabsorbing NaCl, the transport epithelium of the collecting duct plays a large role in determining how much salt is actually excreted in the urine. Though its degree of permeability is under hormonal control, the epithelium is permeable to water. However, it is not permeable to salt or, in the renal cortex, to urea. Thus, as the collecting duct traverses the gradient of osmolarity in the kidney, the filtrate becomes increasingly concentrated as it loses more and more water by osmosis to the hyperosmotic interstitial fluid. In the inner medulla, the duct becomes permeable to urea. Because of the high urea concentration in the filtrate at this point, some urea diffuses out of the duct and into the interstitial fluid. Along with NaCl, this urea contributes to the high osmolarity of the interstitial fluid in the medulla. This high osmolarity enables the mammalian kidney to conserve water by excreting urine that is hyperosmotic to the general body fluids.